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Definition and Theoretical Issues of Equilibrium
Travel demand models and network simulation models are distinct sets of procedures that are
combined within in the framework of regional transportation modeling systems.  The accuracy of
the travel forecasts produced ultimately depends on the quality of both components, as well as
the manner in which the travel demand and network simulation are combined in the context of
global equilibrium.  Conventional 4-step models have numerous limitations compared to more
advanced activity-based (AB) micro-simulation (MSM) models, primarily with respect to the
internal consistency and detailed behavioral realism.  However, one of the remaining advantages
of 4-step models is an established theory, as well as an effective set of practical rules for
achieving global network equilibrium so that travel time and cost simulated in the networks
exactly correspond to the demand (trip tables) generated by the model.  The existence and
uniqueness of the fixed-point equilibrium solution makes the model system outcome objectively
well-defined and independent of the starting conditions.

The reason it is possible to formulate network equilibrium with a 4-step model stems from two
fundamental features:
• Simple demand functions incorporating trip distribution, mode choice, and time-of-day

choice in a trip matrix format, and in a logit-based form that can be derived from convex
entropy-type demand terms.

• Simple deterministic user equilibrium assignment methods that can written as an
optimization problem with link-level convex Beckman-type terms.

The entropy-type matrix terms and the Beckman-type link terms can be conveniently combined
in one program that serves as the basis for equilibrium formulations.  Evans demonstrated this
technique first for a combined trip distribution and assignment model [1] and it was subsequently
extended to other travel dimensions including mode and location choices [2-4].

On the other hand, this issue remains less explored and somewhat obscure for AB models.  These
models have a more complicated analytical structure compared to 4-step models that makes it
difficult to derive equilibrium conditions in a rigorous theoretical way. Additionally,
implementation of an AB model requires MSM of individual outcomes in a form of “crisp”
discrete choices that is very different from the summation of fractional probabilities implemented
in conventional models.  The application of MSM in AB models involves methods such as
Monte-Carlo which creates certain non-continuous variability of outcomes.  Algorithms for
network equilibrium with aggregate 4-step models are based on averaging trip tables across
several iterations; that is a consequence of the continuous nature of the demand model outcome
in a fixed structure.  The outcomes of AB MSM model application structurally changes from
iteration to iteration (same person can implement different sets of tours and trips) and
consequently it is difficult to establish any meaningful averaging rule to apply.



This paper documents the results of testing various equilibrium strategies implemented with the
New York AB MSM model (“NYBPM”).  The purpose of the paper is two-fold:
1. To outline more fundamental research directions and extensions of the network equilibrium

theory to cover AB MSM models in a more rigorous way.
2. To present realistic levels of convergence that can be achieved with AB MSM models in

practice and with establish practical rules and protocols for using this type of models for
different projects and policies.

Practical Ways to Reach Equilibrium with an Activity-Based Model
There are several theoretical issues associated with the achievement of network equilibrium with
AB MSM models:
• Running the same model twice with exactly the same set of inputs and the same starting

random seed would reproduce the results exactly; the reason for practical non-convergence is
that small variations in Level-of-Service (LOS) variables can produce significant local
disturbance in the chain of demand-related choices.  A naïve way of implementing multiple
iterations with feeding back LOS variables does not work with AB models, just as it is
generally not effective even with 4-step models.

• There are two types of Monte-Carlo effects which have significant and distinctive impacts on
global convergence – one relates to MSM with a fixed structure of modeled agents and
choices, and the other relates to MSM where the structure of modeled agents and choices is
dependent on the results of MSM of prior choices in the model chain.

• MSM of choices with a fixed structure is the simpler case where convergence can be
achieved by simply iterating since averaging the LOS variables would ultimately tend to
reproduce not only the aggregate shares but even individual choices.

• MSM of choice model chains with structural impacts can have discontinuity and abrupt
responses to even small variations in inputs; in this case it is difficult to predict the level of
convergence and to analytically estimate the Monte-Carlo component of variation.

There are two main practical ways to ensure convergence (assuming that a fixed-point
equilibrium solution exists):
• Enforcement.  These methods are specific to MSM and designed to ensure convergence of

“crisp” individual choices by suppressing or avoiding Monte-Carlo variability.  These
methods are currently only at a beginning stage of theoretical foundation, with some
empirical strategies being tested.

• Averaging. These methods have been borrowed from conventional 4-step modeling
techniques, but can be also used with MSM as far as they are applied to continuous
outputs/inputs like LOS variables and/or synthetic trip tables generated by the MSM.

Enforcement Methods
Several ways to “enforce” convergence at the individual level have been suggested and tested in
practice.  From the theoretical perspective they can be broken into three groups:
• Re-using the same random numbers or starting random seeds for certain choices that would

ensure that the choice will be replicated if no change occurs to the inputs,
• Gradual freezing of portions of households or travel dimensions from iteration to iteration,
• Analytical discretizing of probability matrices instead of Monte-Carlo simulation.



Re-Using the Same Random Numbers / Seeds
One of the reasons for instability of the demand MSM that manifests itself even if the LOS
variables converge, is that the MSM generates “crisp” choices from and on the top of the
probabilities generated by choice models.  This is usually done by generating a random number
for each choice and relating this number to the choice probabilities (analogous to Monte-Carlo
roulette).  Even if the probabilities become constant, the Monte-Carlo variability alone causes a
random fluctuation of the individual MSM results, although the aggregate results are quite stable
at a certain reasonable level of aggregation.

To avoid the Monte-Carlo variability, random numbers associated with each choice can be
generated in advance, stored and re-used when the model is applied for different scenarios and
across different iterations.  It is enough to store a seed that would automatically generate the
same sequence of random numbers.  Application of this strategy is, however requires a structural
stability of the agents and their decision chains embedded in the model structure.  In
comparatively simple model structures, the list of simulated agents (households, persons, tours,
and trips) and their choice alternatives are fixed from iteration to iteration and only associated
choices probabilities fluctuate with changes in network times and costs.  In this structure, it can
be shown that convergent probabilities (as function of convergent LOS variables) would ensure
convergence of the individual choices.  The same random number will be always applied to the
same agent and choice dimension.  Examples of structurally stable MSM models include tour
mode & destination choice with a fixed set of generated tours.

However, this strategy becomes problematic for more complex decision chains where structural
impacts of prior choices are on the subsequent choices in the model chain.  For example, the
daily activity pattern model that generate tours (i.e. create a list of tours by type for every person)
is in itself a simulation model.  At each iteration, it may generate in a different set of tours for the
same person.  The subsequent mode & destination model would then be applied for a different
set of agents; thus, freezing a seed for each person will not help in mode and destination choice.
It would generate the same sequence of random numbers for each person but these random
numbers would be applied to different agents and associated choices.

Theoretically, structurally stable decision chains can be ensured by considering the maximum
possible number of agents created at each stage of MSM and reserving a random seed for each of
them.  For example, if the maximum modeled number of work tours per day generated by a
worker is two, we could create a placeholder for the 1st and 2nd tour random seed, and just not
use it if the tour was not actually created.  This, however, might create quite a huge system of
placeholders in advanced AB models since they include numerous structural components, for
example, such  as multiple stops on each half-tour.

Re-using random seeds has been applied for the SFCTA model as well as for the special
restricted version of the MORPC model developed for the FTA New Starts projects.

Gradual Freezing of Portions of Households or Travel Dimensions
This is a set of empirical procedures that is based on a predetermined strategy of progressively
freezing certain portions of the simulated agents over the course of global iterations (i.e. fixing



the corresponding choice outcomes until the end of model application).  In general, decisions are
required for the following components of this strategy:
• Principal sequence of agents to freeze that can be, for example:

o Subsets of households with all related choices.
o  Certain travel dimensions with all households considered (like tour generation,

destination choice, time-of-day choice, mode choice, etc).
• Steps in progressing through global iterations; for example, one can envision 6 global

iterations with freezing additional 20% of households at each iteration, starting from the third
iteration.  More, specifically, this would result in the following strategy:
o 100% of households simulated in the 1st iteration
o 100% of households in the 2nd iteration (i.e. all households are re-simulated)
o 80% of households in the 3rd iteration (20% of households are frozen)
o 60% of households in the 4th iteration (another 20% of households are frozen)
o 40% of households in the 5th iteration (another 20% of households are frozen)
o 20% of households in the 6th iteration (another 20% of households are frozen)

• Principles for choice of the frozen and re-simulated households:
o Purely random (with some possible geographic stratification).
o  Based on some criterion that reflects on “unstable travel conditions”; for examples

households/persons/tours/trips that are characterized by a high level of congestion
would be better to re-simulate multiple times.

Gradual freezing is always effective.  It does not mean, however, that a true fixed-point solution
is achieved.  It relies on the reasonability of the technical strategy that can be established only
after multiple trials.  In some cases, such as model application for FTA New Starts projects,
certain travel dimensions can be fixed across all compared scenarios that simplify the choice of
strategy [5].

Analytical Discretizing of Probability Matrices
Analytical discretizing represents a method for converting fractional-probability outputs of
choice models into “crisp” choices as an alternative to the Monte-Carlo technique.

Analytical discretizing has two major advantages over the Monte-Carlo technique:
• Full replication of the model outcome with fixed inputs, i.e. if we run the discretizing

procedure several times with over the same choice model with fixed input variables, the
results will be identical while the Monte-Carlo technique is characterized by inherent
variability (so-called “Monte-Carlo error”) of the results.

• Logical elasticity of the aggregate model outcome with respect to the input variables that is
identical to the elasticity of the parent choice model. The Monte-Carlo technique does not
guarantee logical elasticity and fixing seeds for random number does not help in this respect.
The expected responses of the parent choice model can be “eaten” by the Monte-Carlo error
that will make the model response illogical.

It is interesting to note, that in real terms, discretizing in application is the opposite of choice
model estimation..  In the estimation procedure, discrete outcomes are given in the form of
observed choices and the fractional probabilities are generated in order to replicate the observed
choices as closely as possible.  In the applied discretizing procedure, the fractional probabilities



are given by the core choice model and “crisp” choices are generated in order to replicate the
modeled probabilities as closely as possible.  Thus, discretizing can be thought of as restoring the
observations that would be most plausible for the given choice probabilities.

We introduce the following notation:

Nn∈ = observations in the model estimation, realizations in the model
application,

CCi n ∈∈ = choice alternatives available for each observation / realization

taken from universal set of alternatives,
( )1,0=inδ = Boolean indicator on the observed / modeled choice of alternative

for each observation / realization.
( )iPn = modeled choice probability for each alternative and observation /

   realization.

It is assumed that in both estimation and application of the model the “crisp” choices and
fractional probabilities are subject to the logical constraints:
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The choice model estimation is done by maximizing the (log) likelihood function over choice
probabilities (parameters of the choice model) while the observed choices are given:
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The discretizing procedure in the model application is done by maximizing the entropy function
over the “crisp” choices while the fractional probabilities are given by the core choice model:
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The discretizing approach considers the whole matrix of probabilistic outcomes of the core
choice model and tries to find the structurally closest matrix of discrete numbers that also fits to
the marginal totals of original matrix.  Rows of the matrix correspond to observations /
realizations.  Columns of the matrix correspond to the choice alternatives. The marginal totals
are readily interpreted.  Row totals are all equal to 1 by the condition (1).  The column totals
correspond to the aggregate shares of alternatives.  For a logit choice model with a full set of
alternative-specific constants, the aggregate shares predicted by the model are equal to the
observed shares for all alternatives:
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It can be seen that likelihood optimization (2) and discretizing (3) refer to the same objective
function under the same set of constraints (1, 4) but the maximum is achieved with respect to the
different subsets of variables.  The optimization problem associated with the model estimation
(maximize (2) given (1)) in the MNL case results in the convex problem that can be solved by
the steepest descending method.  The constraint (1) is guaranteed by the form of the choice
model and constrained (4) is guaranteed by the alternative-specific constants. The optimization
problem associated with the discretizing (maximize (3) given (1) and (4)) results in a linear
programming (LP) problem of the so-called transportation type.  An important property of the
transportation problem is that discrete marginal totals guarantee a discrete solution.

Several properties of the discretizing procedure should be mentioned:
• Without constraints (4), maximization of (3) would result in the trivial choice of the

alternative with maximum probability for each observation to be converted to the “crisp”
choice.

• When the discretizing procedure is applied for the choice model outcomes for the same set of
observations that was used in the model estimation, the value of the objective function can
only be improved versus the likelihood achieved in the model estimation.  The observed
“crisp” choices form one of the possible solutions in the feasible region of the LP problem
associated with discretizing.

• The better the core model is in terms of likelihood function (i.e. the closer is the modeled
probabilities to the observed choices) then the closer the discretizing outcome will be to the
observed choices.  Indeed, the (log) likelihood function has a theoretical maximum value of
zero that corresponds to an ideal model with probabilities equal to the observed choice
indicators.  The closer the estimated model is to this ideal, the less room left for the further
improvement of the likelihood in the discretizing procedure.

• The discretizing procedure guarantees unbiasedness of the solution in aggregate sense by
virtue of the constraint (4).

Averaging Methods
Averaging is a universal tool that can be applied for continuous outcomes of any iterative
process.  If a fixed-point solution exists, an averaging strategy like Moving Successive Averages
(MSA) will always find it, although it might require multiple iterations [3].  If the equilibrium
can be formulated as an optimization problem in view of the assumed simplicity of the demand
functions, much more effective analytical procedures than MSA can be applied [4].  However, if
the demand model is too complicated to be written as an explicit optimization problem, MSA
represents the only viable option to ensure a fixed-point solution.   MSA has many possible
technical variations.  Any sequence of numbers kS   would suffice if it satisfies two basic

conditions:
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In particular, the following MSA modifications are frequently used:
• kSk 1=  (literally corresponds to the term MSA)

• kSk 1=  (may exhibit a faster convergence if the starting point is far off)



The essence of MSA is to smooth up the outcome of an iterative procedure where n  denotes
iteration, in the following way:

( ) kkkkk DSDSD
~

1 1 +−= − , (6)

where:

kD
~

= raw outcome of iteration k ,

kD = smoothed outcome of iteration k  that is fed back to the next iteration,

There are two standard ways in which MSA can be applied to ensure convergence of a demand
model combined with network simulation:
• Averaging demand trip tables
• Averaging LOS variables

As shown in Figure 1, these methods also can be effectively combined for AB models, although
it is not necessary for simple 4-step models

Microsimulation model 

Conventional static assignment

Mode & TOD trip tables

Link volumes

Link times

OD skims

X

Figure 1.  Equilibrium / feedback options

In many applications, a MSM demand model can be considered as a trip table generator followed
by conventional assignment and skimming procedures.  In practical planning situations, the
model users are interested in aggregate outcomes of the MSM and do not usually track individual
record details.  With aggregation of MSM outcomes to OD demand flows, , equilibrium
strategies with a MSM model are not principally different from equilibrium strategies applied
with conventional models, with the exception of the different and more sophisticated way for the



generation of the raw trip table in each iteration.  In terms of methods for averaging model
outputs/inputs, the following should be noted:
• Original output of MSM procedure (individual household / person / tour / trip characteristics)

cannot be meaningfully averaged between iterations since it represents a unique set of
discrete values associated with a different list of agents at each iteration.

• Trip tables can be averaged in the same way as for conventional models.
• LOS skims can be averaged in the same way as for conventional models.  There are three

different technical ways for averaging LOS skims:
o Directly average origin-destination (OD) skim matrices.
o Average link times and then skim OD LOS matrices.
o  Average link volumes, calculate corresponding link times, and then skim OD LOS

matrices (preferred method).

Averaging link volumes is a better strategy that results in a faster convergence in over-congested
networks, since link volumes are more stable than link travel times which are derived from an
exponential function of link volumes.

Application Experience
The New York region represents an extreme example and challenge for modeling demand-
network equilibrium for the following reasons:
• Very high levels of congestion that constitute a good example of a setting where a perfect

convergence would be difficult to achieve even with an aggregate model.
• Huge number of persons (20,000,000), size of the regional network (4,000 zones), and multi-

class trip tables (7_4,000_4,000) that result in significant model run time even for a single
global iteration.

•  Full variety of possible behavioral responses of travelers to changing LOS variables
(switching modes, destinations, and/o time-of-day) that objectively contributes to instability /
and non-convergence.

In this paper we have only presented some results of the application of some averaging
strategies, with no enforcement methods applied yet.  The numerous tests that comprise this
research implemented with the New York model can be summarized in the following way:
• The most effective convergence strategy has been found to be a parallel MSA applied for

both trip tables and link volumes producing synthetic LOS skims based on these link
volumes for each subsequent iteration.

• There is a good level of convergence achieved with respect to network link volumes and
aggregate county-to-county trip tables (28_28).

• In practical terms, the first 3-4 global iterations result in a reasonable equilibrium state while
implementing additional 5-6 iterations brings only a marginal improvement.

• It can be clearly seen that the further improvement in convergence cannot be achieved
without overcoming average Monte-Carlo error, and that further refinement of the procedure
is bound to an effective handling of Monte-Carlo variability through enforcement.

Examples of convergence statistics from these tests are shown in Figure 2.  The following
different feedback strategies were tested with 9 global iterations implemented for each strategy:
• Direct – full update of trip tables and LOS skims with no averaging.



• MSA – full update of trip tables and standard MSA for link volumes.
• Root MSA – full update of trip tables and “square root” MSA for link volumes.
• MSA Trip – parallel standard MSA applied for trip tables and link volumes.
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Figure 2.  Examples of convergence statistics

The left-hand side of Figure 2 relates to the Root of Mean Squared Error (RMSE) calculated for
AM period highway trip table aggregated to 28_28 county-to-county flows.  RMSE relates to the
difference between two successive global iterations.  It can be seen that the strategy that includes
a parallel MSA for trip tables and link volumes achieves the best and absolute convergences.
All other strategies that do not include averaging of trip tables result in a certain non-
convergence level though it is comparatively small (±500 trips for an aggregate county-to-county
flow that is less than 2%).

The right-hand side of Figure 2 relates to the % RMSE (relative to the average value) for
highway link times.  It can be stated that there is no significant difference between the strategies
with only a relative disadvantage of direct feedback.  There are two major reasons for
unavoidable fluctuations at the level of 5-6% for any of these strategies:  one stems from Monte
Carlo error, and the other from the highway assignment results themselves which are not stable
for the over-congested AM period and even a small fluctuation of trip table may result in a
significant change in route choice.  This is, however a typical case with all types of models, and
can only be diminished by very large (and often impractical) increases in the number of
iterations of the user equilibrium assignment procedures. .

Conclusions
The following conclusions can be made:
• If the purpose of the MSM process is to produce a stable trip table for a Build scenario that

can be compared in analysis with a similarly stable Baseline model output, such as for FTA
New Starts application, then a very good level of convergence has been observed with an
MSA strategy applied over trip tables and link volumes, and in this sense, it is shown that AB
MSM models can accomplish this property, just as aggregate 4-step models do.

• Three major practical strategies for implementing feedback for the NY model application
have been identified:



o  “Cold” start that requires 8-9 global iterations.  It can start with any reasonable
approximation for LOS skims.  It is necessary to implement for each Baseline
scenario and/or year.  It is however, is implemented only for exceptional Build
scenarios that are characterized by large-scale regional impacts (for example,
Manhattan area pricing).

o  “Warm” start that requires 3 iterations.  Input LOS skims are taken from the last
iteration of the Base (Cold start) run.  This is a standard procedure for Build
scenarios.

o “Hot” start that includes a single iteration only starting with the LOS skims from the
last iteration of the Base run.  This is specific to FTA New Starts applications.      

• The biggest source of instability in the current set of tests proved to be associated with stop-
frequency and stop-location sub-models as well as the subsequent time-of-day choice. At the
same time, the daily tour mode and destination choice part proved to be much more stable.
This is an important manifestation of the principle of “structural changes vs. continuous
fluctuations” that should be addressed in further research, specifically in an effective
combination of averaging and enforcement.
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